Forensic Analysis of Recrystallized Inorganic Oxidizing Salts Used in Pyrotechnic-Based Improvised Explosive Devices Using Light Microscopy and MicroRaman Spectroscopy

Jared Estevanes, PhD; Patrick Buzzini, PhD; Geraldine Monjardez, PhD

Department of Forensic Science Sam Houston State University Huntsville, TX 77340

Improvised explosive devices (IEDs) Background

- Threat, manufacture and use of IEDs became focus of U.S. intelligence and law enforcement communities in late 1990s and early 2000s
- Due to multiple attacks occurring domestically and abroad
 - Oklahoma City Bombing, 1995

Current Prominence of Pyrotechnics in Explosive Incidents

- Pyrotechnic mixtures identified as the main charge in 36% of explosive incidents in 2022 ¹
- ATF does not regulate importation, distribution, or storage of
 - consumer fireworks
- Regulated by federal, state and local agencies to certain extent
- Easily accessible and widely available
 - Street vendor or local shop

Pyrotechnics Composition

- Similar to composition of propellants and explosives
 - Fuel: Metals (aluminum, magnesium and iron) and nonmetals (silicon, carbon, sulfur and some organic compounds)
 - Oxidizer: Potassium chlorate, potassium perchlorate, and
 - potassium nitrate
 - Binders and additives
 - Compounds to produce color, sound or smoke

Previous Work

- Pyrotechnics and composition previously studied in forensic setting
- SEM-EDS has been most commonly used technique for identification of pyrotechnics compositions ^{2,3}
- Vibrational spectroscopy also used in analyzing intact pyrotechnic compositions using both Raman and Fourier-transform infrared (FTIR) spectroscopy ^{2,4}

^[2] Castro, K.; De Vallejuelo, S.F.; Astondoa, I.; Goñi, F.M.; and Madariaga, J.M. "Analysis of Confiscated Fireworks Using Raman Spectroscopy Assisted with SEM-EDS and FTIR," Journal of Raman Spectroscopy, 42:11, pp 2000–2005, 2011; https://doi.org/10.1002/.

^[3] Trimpe, M. "Analysis of Fireworks for Particles of the Type Found in Primer Residue (GSR)," Midwestern Association of Forensic Scientists Newsletter, 32, pp 68–76, Winter 2003.
[4] López-López, M. and García-Ruiz, C. "Infrared and Raman Spectroscopy Techniques Applied to Identification of Explosives," TrAC Trends in Analytical Chemistry, 54, pp 36–44, 2014; https://doi.org/10.1016/j.trac.2013.10.011.

Gaps in Research

Limited literature discussing detection of inorganic oxidizing salts
 from pyrotechnics after deflagration or possible detonation

 Alternative techniques to SEM-EDS and IC are important for forensic

casework

Non-destructive

Rapid

Reliable

Research Goal and Objectives

- Evaluate the advantages and challenges of analyzing post-blast pyrotechnics using a combination of light microscopy and micro-Raman spectroscopy
 - Qualitatively evaluate two swabbing methods (wet vs dry swabs) to determine most optimal for subsequent recrystallization of exploded samples
 - Recrystallize and identify the inorganic oxidizing salts present in the intact pyrotechnic and post blast debris
 - Compare results obtained with microscopy and micro-Raman spectroscopy

Construction of IEDs

- Collaboration with MCFMO
 - Set-up of explosive charge
 - IED initiation and debris collection
- Both IEDs constructed using same components
 - Toolbox (polypropylene) filled with 10 substrates made of various materials

Construction of IEDs and Collection of Post-Blast Debris

- Each IED made of one PVC pipe filled with pyrotechnics
 - 2.0 oz pyrotechnic mixture obtained by cutting fireworks open and collecting powder
 - Powder weighed to ensure similar weight and composition between two devices

• Mixture contained 1.4 oz of Mighty Cracker, 0.3 oz of Roman Candle

10 ball and 0.3 oz of two-color Spaceship

Field Experiments: Intact

Pipe bomb containing mixture of pyrotechnics not pictured

Field Experiments: Post-Blast

Analysis of Intact Mixture: Brightfield microscopy and PLM

- Mixture recrystallized on glass slides using decantation method by Chamot and Mason 5
- Presence of KNO₃, KCIO₄, and Ba(NO₃)₂ crystals

Brightfield & PLM enabled selection of euhedral and subhedral crystals as targets for Raman measurement

Instrumentation: Confocal Raman Microscopy

- Renishaw InVia™ InSpect Raman microscope
- Parameters
 - 532 nm laser
 - 2.5 mW to 5mW at the source
 - 100x objective
 - 3 accumulations
 - Scan range of 100 to 2,000 cm⁻¹
 - 3 spectra collected per crystal to confirm the identity of the salt
- Raman spectra collected on fully dried samples directly off glass slides
 - High confocality

Raman Analysis of Intact Mixture

Swabbing Method Comparison

- Wet vs. Dry swabs
- Debris swabbed in similar locations
 - Ensured comparative results
- Swabs placed in microtube
- 1 mL of DI water added
- Left to extract for 3 minutes
- 10 μL of extract pipetted onto glass slides, then recrystallized using OSAC 2022-S-0023 guidelines

Extraction in DI water for 3 minutes

Swab method comparison

Exemplar photomicrographs of A) wet swab recrystallization and B) dry swab recrystallization

Swabbing Process for Post-Blast Debris

- Prewet cotton swab with DI water
- 2. Swab substrate with cotton swab
- 3. Place into 1 mL of DI water in microtube for 3 minutes
- 4. Squeeze out water from swab
- Discard swab
- 6. Recrystallize from extract

Microscopy of Recrystallized Post-Blast Extracts

- BF and PLM allowed identification of crystals in most post-blast samples with some limitations
 - Formation of fully formed crystals for all inorganics was difficult due to low abundance
 - Crystals observed only in beginning stages of growth and never grew into euhedral forms
 - Unintended consequence of preventing unconstrained crystal growth
 - Aided micro-Raman analysis by providing measurement locations on individual crystals 18

Mixture of Inorganics in Single Crystals

Summary of Post-Blast Extracts Results

- Microscopy was able to confirm KClO₄ in most samples
 - KNO₃ was more challenging lower abundance relative to KClO₄
- Raman confirmed KClO₄ in most samples for both explosions
 - Facilitated detection of subhedral and euhedral KNO₃ crystals that precipitated after microscopy (when drop was nearing complete dryness)
- Ba(NO₃)₂ detected in only one swab from explosion 1
 - Low abundance compared to other salts present (~5% in the mixture)

<u>-</u>	KCIO₄		KNO ₃		Ba(NO ₃) ₂	
Replicate Explosion 1	<i>Microscopy</i> 26	Raman 27	Microscopy 3	Raman 21	<i>Microscopy</i> 0	Raman 1
Explosion 2	28	28	6	28	0	0

*30 total swabs per detonation 2

Conclusions

- Swabbing methodology enabled collection of inorganic oxidizers after explosion
- Recrystallization and subsequent microscopy identified mostly KCIO₄
 - Minor KNO₃
- Raman analysis identified KNO₃ more readily than microscopy alone
 - Discrepancy due to Raman being conducted on dry recrystallized extracts
- Raman analysis identified more than one inorganic salt in a single crystal
- Subsequent Raman analysis was essential to identify minor constituents

Acknowledgements

- Dr. Jared Estevanes
- Dr. Patrick Buzzini
- Kevin Bates & Team (TX MCFMO)
- John Bible
- McCrone Research Institute
 - Gary Laughlin
- IFRTI for providing travel funds
 - Dr. Sarah Kerrigan Director
- Department of Forensic Science at SHSU

Questions?

Geraldine Monjardez g.monjardez@shsu.edu

> Department of Forensic Science Sam Houston State University Huntsville, TX 77340

